

Chemotherapy-induced peripheral neuropathy

Test the efficacy of analgesic agents to alleviate chemotherapy-induced neuropathic pain

Preclinical Pain In Vivo Services

Pharmacology Discovery Services is a partner lab of Eurofins Discovery specialized in *in vivo* rodent model testing for preclinical drug discovery. We have conducted *in vivo* testing for pain disorders for both efficacy and side-effect profiling for over 50 years. All pain *in vivo* models are validated in a dose-dependent manner with approved benchmark positive controls to assure high-quality reproducible data is provided to our clients. To meet the needs of your specific Pain drug discovery project, we also have the flexibility and expertise to develop custom *in vivo* models.

Available	Dete	Madala
Available	гаш	IVIUUCIS

Acute	Neuropathic
Tail Flick	SNL (Chung) Model
Post-Operative Pain (Brennan)	CCI (Bennett) Model
Inflammatory	Chemotherapy-induced (CIPN); Taxol
Formalin	CIPN; Oxaliplatin
Acetic Acid Writhing	STZ Induced-Diabetic Pain
Carrageenan-induced	MIA Induced-Osteoarthritis Pain
CFA-induced	Bone Cancer Pain

Chemotherapy-Induced Peripheral Neuropathy

Chemotherapy-induced peripheral neuropathy (CIPN) is a serious complication associated with anticancer drugs. Pain and autonomic peripheral neuropathy often occur during chemotherapy treatment and can be a potential factor for the interruption of cancer treatment with an increased risk of mortality. The presence of CIPN is noted as hyperalgesia (increased response to a noxious stimuli) or allodynia (nociceptive response to a normally innocuous stimuli). Changes to peripheral nerves produce nerve hyperexcitability and pain from sensitivity to mechanical or cold stimuli. CIPN is a common side effect in 20-80% of patients receiving Taxol or Oxaliplatin. However, no effective treatment for this complication has been developed. Similarly, in rats after multiple treatments with these chemotherapy drugs, a significant increase in sensitivity to mechanical or cold stimuli or cold stimuli is observed^{1,2}.

Pharmacology Discovery Services offers two CIPN rat models to support the evaluation of the analgesic activity of your lead compounds; the platinum-based drug, Oxaliplatin, and the microtubule-stabilizing drug, paclitaxel (Taxol®). The models employ the mechanical allodynia test to assess the neuropathic pain. A sharp withdrawal of the hind paw to light mechanical stimuli indicates the presence of allodynia. The cold allodynia test can be employed as a second measurement in the rat Oxaliplatin model. Thus, the models can serve as an early assessment for evaluating the therapeutic efficacy of new analgesic agents.

Chemotherapy-induced peripheral neuropathy

Chemotherapy-Induced Neuropathic Pain, Oxaliplatin, Rat, Item# 504700

Figure 1. Withdrawal response (g) to von Frey monofilaments assessing mechanical allodynia in the hind paw. # p<0.05, treated vs. sham control; unpaired Student's t-test. * p<0.05, treated vs. vehicle control; one-way ANOVA followed by Dunnett's test.

Chemotherapy-Induced Neuropathic Pain, Paclitaxel, Rat, Item# 504400

Figure 2. Withdrawal response (g) to von Frey monofilaments assessing mechanical allodynia in the hind paw. *p<0.05, treated vs. vehicle control; one-way ANOVA followed by Dunnett's test.

Related Models		
Model	Species	Item #
Analgesia, Neuropathic Pain, Spinal Nerve Ligation	Mouse	504250
Analgesia, Neuropathic Pain, Chung Model	Rat	504200
Analgesia, Neuropathic Pain, Bennett Model, Nerve Ligation	Rat	504100

Animals: Male Sprague Dawley (SD) rats

Induction: Six doses of Oxaliplatin (4 mg/kg) are intraperitoneal (IP) administered to rats over 17 days.

Verification of allodynia: The rats are verified if the development of allodynia on Day 21.

Efficacy test: Test articles are administered and efficacy is assessed at a specified time on Day 22. The model can be extended over a longer time course.

Behavioral end points: Mechanical allodynia (50% withdrawal threshold; g); Cold allodynia (Optional)

Positive control: Gabapentin (60 mg/kg, PO) at 2 and 3 hours post-dose

Turnaround time: 45 Days

Species: Male Sprague Dawley (SD) rats

Induction: Four doses of Paclitaxel (4 mg/kg) are IP administered to rats over 7 days.

Verification of allodynia: The rats are verified for the development of allodynia on Day 13.

Efficacy test: Test articles are administered and efficacy is assessed at a specified time on Day 14. The model can be extended over a longer time course.

Behavioral end points: Mechanical allodynia (50% withdrawal thresholds; g); thermal hyperalgesia (seconds)

Positive control: Gabapentin (100 mg/kg, PO) typically at 2 hrs post dose

Turnaround time: 45 Days

References

- Zheng H, Xiao WH, Bennett GJ. Functional deficits in peripheral nerve mitochondria in rats with paclitaxel- and oxaliplatin-evoked painful peripheral neuropathy. *Exp Neurol.* 2011 Dec;232(2):154-61. doi: 10.1016/j.expneurol.2011.08.016
- 2. Areti A, Yerra VG, Naidu V, Kumar A. Oxidative stress and nerve damage: role in chemotherapy induced peripheral neuropathy. *Redox Biol.* 2014;2: 289-295.

For more information on in vivo pain services, please visit: pharmacologydiscoveryservices.com

© 2022 Pharmacology Discovery Services. All rights reserved. All Trademarks belonging to third parties are the property of their respective owners. 21333 062822